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Abstract 
A new, fracture mechanics theory is derived based on a new orthotropic-isotropic transformation of the Airy stress 

function, making the derivation of the Wu-“mixed mode I - II fracture criterion possible, based on the failure 

criterion of the flat elliptic crack. As a result of this derivation, the right fracture energy and theoretical relation 

between mode I and II stress intensities and energy release rates are obtained.  Elsevier Ltd.  all right s reserved 
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1. Introduction 

Fracture mechanics of all materials is now based on the mathematical crack of zero thickness with 

singularities at the crack tips. This prevents the derivation of the right failure criterion and thus prevents 

the description of real strength behaviour. This can be corrected by regarding the physical possible flat 

elliptical crack. Then the mixed mode failure condition can be derived based on the right critical stress 

state of fracture at the elliptical crack boundary.  

Wood and other orthotropic materials should be regarded as reinforced materials. The orthotropic Airy 

stress function is based on the spread out of the reinforcement to act as a continuum, satisfying the 

equilibrium, compatibility and strength conditions. In reality this only is possible by interaction through 

the matrix and the solution thus is not right because the equilibrium conditions and strength criterion of 

the matrix, as determining element, are not satisfied. It thus is necessary to solve the Airy stress function 

for the stresses in the isotropic matrix and this appears to give the right solution in accordance with the 

Wu-failure criterion and other measurements as also is discussed in [1].  

 

Nomenclature  

c = half a crack length 

cij = constant 

E  = elastic modulus  

G = energy release rate or modulus of rigidity 

GC = critical energy release rate 

K, KC, KI = stress intensity factor; c=critical; I mode I  

n = constant 

p = stress 

q = power 

r = radius 

s = power 

t  = thickness 

U(z), F(z)  = stress functions 

v  = displacement 

x, y; X, Y = coordinates 

z = x + iy, a complex variable 

α = constant 

, ,    = angles 

  = factor 
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  = strain 

  = friction coefficient; root of an equation 

ν = Poisson’s ratio 

ζ  = ξ + iη  complex variable 

 ,   = elliptic coordinates 

0   = boundary of the elliptical crack  

  = normal stress 

t  = the micro tensile strength of the crack boundary material 

  = shear stress 

 z ,  z  = stress functions  

ϕ(z) = stress function 

 

2. Methods of analysis  

None of the linear elastic fracture mechanics solutions of the orthotropic Airy stress function are close 

enough to the measurements to give the real solution. Therefore, the always applied relation between the 

strain energy release rate IG  and the mode I stress intensity IK : 

xy2 x x
I I

x y y y xy
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2E E E 2 E G

 
     

 
 

.     (1)  

and the related value of IIG , do not apply and are far away from the measurements of e.g. [3]. To 

correct this, eq.(1) has to be replaced by eq.(2) based on the matrix strength. In eq.(1), IG  is the strain 

energy release, IK  the mode I stress intensity, and the E ‘s are the moduli of elasticity and xyG  the 

modulus of rigidity (see e.g. [6], [3]). The reason that eq.(2) and not eq.(1) is determining also follows 

from the smaller value of IcG  according to eq.(2) showing thus a lower upper bound. Equation (2) 

follows from the equilibrium and strength conditions of the matrix stresses as follows: 

For an elliptic crack of length 2c, in the main direction, in an infinite medium of thickness t, the energy, 

to open or to close of the crack to an opening “2v”, by a stress   perpendicular to the crack plane, is:  

y
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  ,  (2)  

cG  is the fracture energy per unit fracture surface.  

For the flat crack problem, solutions of the two-dimensional orthotropic solid apply. The stress-strain 

relations then are:  

x 11 x 12 yc c     ;   y 12 x 22 yc c     ;   xy 66 xyc   .   (3) 

This can be written: 

x x x 21 y y/ E / E     ;   y 21 x y y y/ E / E     ;   xy xy xy/ G     

The Airy function follows from:
2
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,   

satisfying the equilibrium equations: x 0
x y

 
 

 
, etc.   

Substitutions of eq.(3): 
2 2
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 
, etc. in the compatibility condition: 
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,   (4)  

gives:   
4 4 4

22 66 12 114 2 2 4

U U U
c c 2c c 0

x x y y

  
   

   
   (5) 

The general solution of eq.(5) is:   
4

i
i

U F x y  , where μ is a root of the characteristic equation: 

4 2
11 66 12 22c (c 2c ) c 0      , giving:  

 
2 66 12 22 11

2
11 66 12

c 2c 4c c
1 '1

2c c 2c

 
      
  

,  (6)  

thus 4 imaginary roots. Introducing the complex variables 1z  and 2z , defined by: 1 1z x y x' iy'       

and   2 2z x y x'' iy''    , the solution of eq.(5) assumes the form: 

1 1 2 2 1 1 2 2U F (z ) F (z ) F (z ) F (z )    , 

where the bars denote complex conjugate values. The stresses, displacements and boundary conditions 

now can be written in the general form of the derivatives of these functions. There are standard methods 

to solve some boundary value problems (e.g. by Fourier transforms of equations of the boundary 

conditions) but in principle, these functions have to be chosen, for instance as polynomials, Fourier 

series or power series in: z or 1z , etc.  

For the crack tip problem in orthotropic wood, eq.(5) is chosen in the form: 
2 2 2 2

1 22 2 2 2
U 0

x y x y

     
    

     
   (7) 

where 1 2 11 22c / c     and   1 2 66 12 22c 2c / c    . Introducing 3 sets of polar coordinates for this 

case,  ix iy re   , 1i
1x iy / re    ,   2i

2x iy / re    ,  

it may be verified that eq.(7) has elementary solutions of the forms: 
n

1 1r cos(n )  ,  n
1 1r sin(n )  ,   n

2 2r cos(n )  ,  n
2 2r cos(n )  ,  

as well as terms in ln( 1r ),  ln( 2r ). Solutions may be chosen in the form of series of these types. For 

wood, the powers of r terms were chosen e.g. in [9], what may lead to:    

 
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r r 1 2 3s
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, , f ,f ,f
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       


   (8)     

and:                   
 

      B
r r 1 2 3q

K
, , f ,f ,f

2 r
       


  (9) 

with q ≤ s. This applies only in the vicinity of a notch root as stress singularity at r = 0. Because for q < 

s, the stresses of eq.(8) are always larger than those of eq.(9), the solution, eq.(9), should be rejected 

based on the boundary conditions at failure. It thus should not have been mentioned that there are 2 

singular stress fields, only eq.(8) applies and, as appears, only as approximate solution for the loading 

case of uniaxial stress in the main direction.  

In literature, different values of the power “s” of this power law approximation are given depending on 

the adjustment. For instance, one finite element solution showed:  s = 0.45, near a rectangular notch, 

while another investigation of the same problem showed values of s = 0.45 for   and s = 0.10 for   

while s = 0.5 for all stresses according to a boundary collocation method. By the finite difference 

method, powers are found of s = 0.437 for the same rectangular notch of 90⁰ while s = 0.363 and 0.327 

for wider notch angles of 153⁰ and 166⁰. This differs from the test values of s = 0.48, 0.32 and 0.23 for 

these cases, which are precisely explained by the volume effect according to the new theory (see the 

next paper that now is under review)  

These results show that orthotropic failure is not determining. Because wood is a reinforced material 

where the reinforcement interacts through the matrix and also the primary cracking is in the matrix, the 
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failure condition should be based on the strength of the matrix and the Airy stress function of the matrix-

stresses should be solved. Lignin is isotropic and hemicellulose and cellulose are transversely isotropic, 

what means that only one stiffness factor in the main direction has a n-fold higher stiffness in proportion 

to the higher stiffness of the reinforcement with respect to the matrix stiffness. For a material, with a 

shear-reinforcement and a tensile reinforcement in the main direction, eq.(10) applies for equilibrium of 

the matrix stresses: 
2
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


;   
2

y 2
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x


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;  
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n x y

 
 

 
,    (10) 

In stead of using the matrix stresses and the matrix stiffness, the n-fold higher total stresses and n-fold 

higher stiffness can be used what gives the same compatibility condition, (thus the same condition for 

the matrix and reinforcement). Inserting the total stresses in the compatibility equation, eq.(4), now 

gives:   

 
4 4 4

22 6 66 1 12 1 114 2 2 4

U U U
c n c (1 n )c n c 0

x x y y

  
    

   
   (11) 

For the isotropic matrix is: 1 11 22n c / c 1  and   6 66 1 12 22(n c 1 n c ) / c 2    giving: 

4 4 4
2 2

4 2 2 4

U U U
2 ( U) 0

x x y y
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    
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   (12) 

and: 22 x
1

11 y

c E
n

c E
  ;   

xy12 12 22
6 21 12

22 11 66 y

Gc c c
n 2 2

c c c E

 
        
 

   (13) 

This orthotropic-isotropic transformation of the Airy stress function and calculation method based on the 

matrix stresses is used in the following. 

 

3. Theory of fracture mechanics based on the elliptical flat crack  

 

3.1. Introduction. 

Because there is a volume effect of the strength and no clear influence on macro-crack propagation of 

the crack geometry and sharpness of the crack-tip of the notches in wood, orthotropic fracture mechanics 

is not determining. Determining are the small cracks in the matrix around the macro tip that have to 

propagate to extend the macro crack and are determining for the total behaviour. This determining small 

crack behaviour also follows from the failure criterion for combined shear and normal force in common 

(un-notched) clear wood [7] that is the same as the fracture mechanics criterion eq.(29), for notched 

wood. It also follows from the simulation of the load-deformation response from randomized weak spots 

(e.g. small cracks) of test specimens and also follows from the explanation of the volume effect for that 

case (see Appendix B of [1]). 

When “flow” occurs around the crack tip, the ultimate strain condition at the crack- boundary 

determines the extension of the flow area. The elastic-plastic boundary then acts as an enlarged crack 

boundary with the “flow” stress as ultimate elastic stress for the linear elastic fracture mechanics 

calculation..  

 

3.2. Basic equations of the stressed infinite region with an elliptic hole   

The classical way of analyzing the elliptic crack problem is to use complex variables and elliptic 

coordinates.  

The Airy stress function can be expressed in terms of two analytic functions of the complex variable z (= 

x + iy) and the transformation to elliptic coordinates in Fig. 1, gives:  

z = x + iy = c ∙ cosh(ξ + iη) or: x = c ∙ cosh(ξ) ∙ cos(η);  y = c ∙ sinh(ξ) ∙ sin(η).  

For an elliptic hole, ξ = ξ₀, in an infinite region with uniaxial stress p at infinity in a direction inclined at 

  to the major axis Ox of the ellipse, the Airy stress function U, satisfying 2 2( U) 0   , and satisfying 
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the conditions at infinity and at the surface ξ = ξ₀, showing no discontinuity of displacement, thus being 

the solution, is: U = R{zϕ(z) + χ(z)},  with [2]:  

4ϕ(z) = p∙c∙exp(2ξ₀)∙cos(2β)∙cosh(ζ) + p∙c∙(1 – exp(2ξ₀ + 2iβ)∙sinh(ζ)   (14)  

4χ’(z) =  - p∙c∙[cosh(2ξ₀) - cos(2β) + exp(2ξ₀)∙sinh(2{ζ - ξ₀ - iβ})]∙ cosech(ζ)   (15)  

where ζ = ξ + iη.  

For the stresses at the boundary, due to a stress p at an angle β to the crack, is:  
i2i 2[z ''(z) ''(z)]e 

             and:   (16)  

2[ '(z) '(z)] 4R{ '(z)}           (17)  

and the tangential stress t  at the surface 0    is simply known from eq.(17)  because here 0  .  

Thus:  

 
Figure 1 - Elliptic coordinates and elliptic hole. 

 

t 0 02[ '( i ) '( i )]           = 0 0

0

p(sinh(2 ) cos(2 ) exp(2 ) cos(2( ))

cosh(2 ) cos(2 )

      

  
   (18) 

while eq.(15) has to vanish at: 0   . 

Eq.(18) can be extended for two mutual perpendicular principal stresses 1p  and 2p  (see Fig. 3) by a 

simple addition leading to eq.(25) below.  

 

3.3. Ideal flat crack solutions  

The limit case of the elliptical crack with 0  approaching zero should be comparable with the 

mathematical flat crack approach of the singularity method, making a comparison of the methods 

possible. For stresses near the tip of a flat crack, it is possible to choose new coordinates X, Y with the 

origin in the focus of the ellipse and because ξ and η are small, higher powers than the square can be 

neglected (see Fig. 2). Thus:  X = x - c = c(ξ
2
 – η

2
)/2,    Y = y = cξη   (19)  

or in polar coordinates: r =  
0.5

2 2X Y ,  X =  r∙cos(θ), Y = r∙sin(θ)    

and from eq.(19):  
0.5

2 2 2 22 X Y / c 2r / c       

 2r / c cos / 2    ,      2r / c sin / 2      (20)  

   / tan / 2 tan        

Using these relations in the solutions of eq.(16) and (17) the following stresses are found in polar 

coordinates for the loading case of a stress p at infinity at an angle β with the crack:  
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               
0.5

2 2 2 2
r8r / cp sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sin              

           
0.5

2 2 3 28r / cp sin / 2 cos / 2 sin 2 2cos / 2 sin           (21) 

              
0.5

2 2 2 2
r8r / cp cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sin           

 
Figure 2 - Confocal coordinates  

 

showing the stress increase by 1/ r  near the crack tip.  

Of interest for the singularity method of wood, is the small crack in the weak direction that only is 

supposed to propagate in this direction. Then θ= 0 and the equations (21) become:  

   
0.5

2 2
r8r / cp 2sin      (22) 

   
0.5

2 28r / cp 2sin      (23) 

     
0.5

2
r8r / cp 2sin cos       (24) 

These equations simply give the Rankine, or the maximum stress conditions of the strengths in the main 

planes. Thus fracture occurs when the tensile strength is reached perpendicular to the grain and/or when 

the shear strength in this plane is reached. Thus: I IcK K  and II IIcK K  for all stress states (without 

interaction). It is known, that this does not apply, showing that the, by the singularity method predicted, 

critical states are not determining for fracture. This does not only apply for the matrix stresses but also 

for the applied, n-fold higher orthotropic stresses.  

The right failure condition for combined stresses will be derived below.  

 

3.4.  Derivation of the "mode I - II" - interaction equation  

A general failure criterion [5] follows from the ultimate stress that occurs at the boundary of the crack. 

By an extension of eq.(18) (by superposition) to 1 1p    inclined at  an angle π/2 + β to the Ox-axis and 

2 2p    inclined at an angle β, (see Fig. 3), eq.(18) turns to:  

y 0 xy 0 0

t

0

2 sinh(2 ) 2 [(1 sinh(2 )) cot(2 ) exp(2 ) cos(2( )) cosec(2 )]

cosh(2 ) cos(2 )

            
 

  
, 

where the stresses are given in crack coordinates with the x-axis along the crack. For small values of 0  

and   (flat cracks), this equation becomes:  
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Figure 3 - Stresses in the crack plane Ox 

 

 0 y xy

t 2 2
0

2   
 

 
   (25) 

The maximum (critical) value of the tangential stress t , depending on  , is found by: td / d 0  , 

giving the critical value of  :  

      
2

2 2 2 2
xy 0 0 y xy 02 / 2 2 / 0             ,  or:  

     2 2 2 2
xy 0 0 y xy t 02             

where in the last equation, the second equality sign is due to the substitution of eq.(25). From the first 

and last term of this equation follows that: t xy    and from the first 2 terms:  

 2 2
0 y y xy xy/ /            (26)  

or with eq.(25):  

2 2
0 t y y xy           (27)  

and eq.(27) can be written:  

 

2
y xy

2 2
0 t 0 t

1
/ 2

 
 
   

  (28)  

According to eq.(20) is, for  a small value of θ: 0 02r / c  , giving in eq.(28):  

 

 

2

xyy

2
t 0

t 0

cc
1

2 r / 2 2 r

  
 
   

 

what is identical to the empirical parabolic interaction equation of Wu:  

 

 

2

III

2
Ic IIc

KK
1

K K
     (29) 

For an isotropic material, crack propagation starts at the worst oriented initial cracks, depending on the 

stress state, that can be found by equating: td / d 0    in eq.(18). For wood, the presence of such worst 

oriented cracks will lead to the early crack formation in the weak direction, along the grain, that will act 

as the initial cracks for later failure. Nearly isotropic behaviour of the matrix with initial cracks in the 

weak planes along the grain occurs in Balsa wood, as follows from IIc IcK 2K , according to eq.(28) 

and (29) in accordance with the measurements of Wu on Balsa being 
0.5

IIcK 140 psi in    and  

0.5
IcK 60 psi in   . 
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Eq.(29) is generally applicable also when y  is a compression stress as follows from the measurements 

of Figure 4. When the compression is high enough to close the small cracks ( y,cl xy 02G   ), xy  has to 

be replaced by the effective shear stress:  *
xy xy y y,cl       in eq.(28) or:  

 
2

*
xyy,cl

2 2
0 t 0 t

1
/ 2


 
   

,   (30) 

what is fully able to explain fracture by compression perpendicular to the crack plane (see Fig. 4). In this 

equation is   the friction coefficient. 

For species, with denser layers than those of Balsa, a much higher value of IIcK  than twice the value of 

IcK  is measured because due to the reinforcement, η is smaller than the isotropic critical value of 

eq.(26). To read the equation in applied stress values, the matrix stress iso  has to be replaced by 

ort 6/ n  in eq.(26), and the slope δ in Fig. 2 of the location of the failure stress, is: 

m 0 6tan / 1/ 2n     . 

For small values of η = - |η|, eq.(25) can be written, neglecting (η/ξ0)
2
 : 

   

2
y xy xy

2 2 2
0 t 0 t 0 t

1 1
/ 2 / 2 / 2

  
    

        
   

where |η| is the absolute value of η, being negative. Thus:  

I II

Ic IIc

K K
1

K K
     (31)  

This is a lower bound, with:  IIc 0 m IcK / K        (32)  

and the maximal value of m   is found by measuring IcK  and IIcK , giving e.g. a value of about 

0 m/ 7.7   ,  showing that the neglect of  
2

0/   = 0.017 with respect to 1 is right. Measurements 

between the lines eq.(29) and (31) thus indicate a strong difference between IIcK  and IcK  of the 

structure that is crossed by the propagating crack.  

 
Figure 4 - Fracture strength under combined stresses [4], [6] 

 

Thus far, the equations are given in matrix stresses. To change this in the real applied orthotropic 

stresses, iso ort 6/ n    has to be inserted in eq.(28) giving: 
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 

 

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

  
     
      

    (33) 

and it follows that: IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

   (34) 

according to eq.(13) is e.g. for small clear specimens:   

 6 21 12 xy y2n 2 2 (G / E )      = 2(2 + 0.57)/0.67 = 7.7 for Spruce  

and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-direction.  

This is independent of the densities of respectively 0.37 and 0.50 at a moisture content of 12 %. Thus, 

for  1.5
IcK 265 kN / m   is 1.5

IIcK 7.7 265 2041 kN / m     in the TL-direction. This agrees with 

measurements [6]. In RL-direction this factor is 3.3 to 4.4. Thus, when IIcK is the same as in the TL-

direction, the strength in RL-direction is predicted to be a factor 1.7 to 2.3 higher with respect to the TL-

direction. This however applies at high crack velocities (“elastic” failure) and is also dependent on the 

site of the crack. At common loading rates a factor lower than 410/260 = 1.6 is measured [6] and at 

lower crack speeds, this strength factor is expected to be about 1 when fracture is in the “isotropic” 

middle lamella. It then thus is independent of the TL and RL-direction according to the local stiffness 

and rigidity values. To know the mean influence, it is necessary to analyze fracture strength data 

dependent on the density and the elastic constants of 6n . From the rate dependency of the strength 

follows an influence of viscous and viscoelastic processes. This has to be analyzed by deformation 

kinetics (see [8] and [1]-Rheology).  

A general problem is further the possible early instability of the mode I-tests. This means that small 

crack instability outside the crack-tip is determining e.g. in the tests of [6] (see [1]). In this case all 

constants should be related to the mode II data.  

 

3.5. Experimental verification  

Measurements are given in fig. 4. The points are mean values of series of 6 or 8 specimens. The 

theoretical line eq.(29) is also the mean value of the extended measurements of Wu on balsa plates. Only 

the Australian sawn notch data deviate from this parabolic line and lie between eq.(29) and the 

theoretical lower bound eq.(31). This is explained by the theory by a too high IIcK / IcK -ratio, indicating 

a mistake in manufacture. The theoretical prediction that IIc IcK 2K , for dominant isotropic behaviour 

of the matrix, is verified for Balsa with its extremely low fiber density. The prediction that IIcK / IcK  

 21 12 xy y2 2 (G / E )      agrees with the measurements, using general mean values of the 

constants. However, precise, local values of the constants at the cracks are not measurable and there is 

an influence of the loading rate and cracking speed. Thus safe lower bound values have to be used in 

practice.  

The theory also fully explains the influence of compression perpendicular to the crack plane on the shear 

strength, eq.(30) in fig. 4. 

The conclusion thus is that all measurements are explained by the theory.  

 

4. Energy Principle 

 

4.1. Correction of the Energy Equation. 

Eq.(2) can be extended by superposition to: 

 2 2
y xy f yG E / c       (35) 



 10 

This only is right, when fG  is not constant but depends on y xy/  , because else, for y  = 0, eq.(35) 

predicts a too low shear strength. This already was noticed by Griffith. The equilibrium method gives a 

two times higher shear strength than according to the energy method. This was explained by supposing 

that there is plenty of energy for failure, but that the shear stresses are too low for failure. This means 

that the failure condition eq.(33) is determining for fG  in the energy equation.  

For the orthotropic case eq.(35) is:  2 2 2
y xy 6 f y/ n G E / c       and when xy 0  , is  

fG  = IcG  and Ic y IcK E G .  When y 0   is: 2 2 2
xy 6 IIc y 6 Ic yc n G E 4n G E    , because IIc 6 IcK 2n K  

(eq,(34)).  Thus: IIc 6 y IIc 6 y IcK n E G 2n E G   or: IIc IcG 4G   

The failure condition eq.(33) can be written in fracture energies: 

 

 

2

III

2
Ic IIc

KK
1

K K
   I II

IIcIc

G G

GG
   

  ff

IIcIc

1 GG

GG

   
    (36) 

where:   f I II f fG G G G 1 G           

Thus: 
 

2
f I

2
f II

G K

1 G K




 
 or: 

2 2
II xy
2 2 2
I y 6

1 1

K
1 1

K

  


 
 

   (37)  

and   depends on the critical stress combination xy y/   for the small cracks near the macro crack-tip at 

failure and not on the stresses of the fracture energy.  

Eq.(36) is a quadratic equation in f IcG / G  and the real root is:  

IIc IIc Ic Ic ff I

2
Ic Ic Ic IIc IcIIc

G G 4G 4G GG K
1

G 2G 2G G KG

 
         (38) 

Measuring f cG G  and knowing IIc IcG / G ,   can be calculated providing the best estimate of the 

determining stress combination of shear xy  with tension perpendicular y  of a given structure or notch 

type.  

Eq.(38) can be written: 2 2
f Ic IIcG 4G /(1 ) G /(1 )         (39) 

when the theoretical value IIc IcG / G 4  applies.  

Applications of the theory with the total critical fracture energy fG , depending on the type of structure, 

are given in [1]. 

 

4.2. Experimental confirmation.  

 

The theory is e.g. applied for beams with rectangular end notches as basis of the design rules of the 

Dutch Timber Structures Code and some other Codes and is a correction of the method of the Euro-

Code.  

In the Euro-Code, an approximate compliance difference is used and a raised stiffness according eq.(1). 

Further IcG  is used in stead of fG  according to eq.(39). It appears however, also from other testing as in 

[3], that eq.(2) has to be applied  in stead of eq.(1) and the calculation has to based on the real 

compliances. Use of fG  according eq.(39) explains the differences in fracture energies depending on the 

notch depth and structure and shear slenderness of the beam by the different occurring xy y/  -values 

according to eq.(37).  

Important is further that the theoretical prediction IIc IcG 4G  is verified by measuring  IIc IcG / G  = 3.5  

(R
2
 = 0.64).   

At comparing results it should be realized that there is Weibull volume effect of the strength [1].  

 



 11 

5. Conclusions  

- The singularity approach of fracture mechanics, applied to all materials, is not able to give the right 

fracture criterion for orthotropic materials. 

- Based on the elliptical crack approach, the mixed I-II-mode fracture criterion can be derived as 

consequence of the ultimate tensile strength condition for the uniaxial stress along the micro-crack 

boundary. 

- The critical fracture energy follows from the failure condition of combined stresses due to the critical 

stress state at the crack boundary of the critical small crack. For every type of notched structure 

therefore a different apparent critical energy release rate is to be expected independent of the stress 

combinations of the strain energy. Although for an end notch, in one case, the fracture energy was nearly 

only shear strain energy, while in an other case there almost only was bending strain energy, there in 

both cases was a combined failure, mode leading to a value of cG  close to the mode I value and not to 

mode II value, as is predicted by the other methods. 

- Based on this adapted critical energy release rate, a correction of the energy approach for fracture of 

timber beams with end notches is given in [1] that also can be applied to brittle joints loaded 

perpendicular to the grain.  

- The concept of equilibrium, compatibility and strength requirements of the isotropic matrix stresses 

provides a simple orthotropic-isotropic transformation of the Airy-stress function. 

- Based on this approach is: Ic y IcK E G  ,  IIc 6 y IIcK n E G  and  IIc IcG 4G   

 
2 2

f Ic IIcG 4G /(1 ) G /(1 )        with :  2 2
xy y1/ 1 /      and: 

   6 21 12 xy yn 2 G / E       

- The theory explains the relations between IcK  and IIcK  in TL- and in RL-direction that are related by 

the ultimate strength at the crack boundary depending on the cracked wood-layer material.  

- The theoretical value of IIc IcG 4G  is verified by measurements where ratio 3.5 is found (R
2
 = 0.64) 

in stead of 4.  

- The verification of the derived theory by measurements shows the excellent agreement. The method 

provides an exact solution and is generally applicable. 
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